
«Проект Расчета». Цена вопроса

<u>Раздел 1</u> Исходные данные для выполнения расчета по определению возможных перспектив изобретения № 2554255» «Электровзрывной реактивный пульсирующий двигатель»

Электрические, энергетические, количественные, качественные, временные параметры взрывания подсоленной воды, (электролита) взяты из книги

В.П.Глушко "Путь в ракетной технике", Избранные труды, 1924-1946. М., "Машиностроение"., 1977 Академия наук СССР.

В..П. Глушко.

По трубке и каналу двигателя непрерывно и принудительно подается электролит ($H_2O+5\%$ NaCl). С блока конденсаторов подаются электрические разряды, например с частотой 5 гц и с энергией в 200 дж. Длительность импульса 0,001-0,0001 сек. Ток в импульсе \approx 450 ампер, мощность импульса 200 квт.

Происходит взрывное нагревание электролита с диссоциацией на атомы. Образовавшееся высокое давление паров электролита, в месте взрыва, выбрасывает «пассивную часть» электролита со скоростью 172 м/сек. Значение получено расчетом на основании эксперимента с использованием баллистического маятника, но уверенности в правильности расчета нет) (См. видеоролик файл с видео эксперимента «1Выстрел со Sprit ом.mp4»).

Раздел 2. Описание проведенного эксперимента:

В сопло реактивного двигателя, по изобретению 2554255 РФ, заправлялся Электролит (поваренная соль и немного марганцовки). Примерно 0,26 грамма. Длина канала 40 мм, диаметр 3 мм. На выходе сопла (канала) вставлена пулька от воздушного ружья 0,49 грамма диаметром 4,5 мм. Пулька вставлена свободно. Электрическим разрядом взрывается электролит в донной части канала.

В видеоролике, «1Выстрел со Sprit ом.mp4»), можно наблюдать одиночный импульс реактивного двигателя по изобретению №2554255, в результате которого пассивный электролит выбрасывает свинцовую пульку по банке с остатками Sprite, которая подлетает на высоту 60 мм и получает пробоину. Напиток успешно вылился. В банке оставалось 20-30 грамм напитка. К сожалению, в момент проведения опыта, не было чем взвесить банку, с остатками напитка.

Видео здесь:

https://www.youtube.com/watch?v=25vKcVZ3ZrM&feature=youtu.be

<u>Раздел 3. Проблемы.</u> Энергия взрыва, определенная в расчете, (сопровождающем данное Заявление) составляла около 200 дж.

Теоретическое время разряда конденсаторов, составляет около 0,0001 сек. Дж/сек — это 1 ватт.

Если предположить, что разряд происходил даже за 0,001 сек, то энергия взрыва составляет 200 дж/0,001 = 200000 ватт, или 200 квт.

При использовании воздушного разрядника по В.П. Глушко длительность разряда составляла 0,00001 сек., но при напряжении 40000 вольт.

Ток, в опытах Морозова В.С., при напряжении всего в 450 вольт, (в случае 200 квт) может составлять около 400А. (Конденсаторы иногда заряжались до 420 вольт). Поэтому, общепромышленные выключатели «приваривались», а попытка сделать воздушный разрядник из вольфрамовых игл, диаметром 2-3мм, приводила к расплавлению острой части одной из игл разрядника, да и дуга в 0,5 мм, не пропускала столь большие токи, и приходилось «помогать» разряднику.

Управлять частотой следования импульсов при таких токах, и низких напряжениях очевидно весьма сложно. Поэтому для реализации частотных микровзрывов необходимо применять методику микровзрывов, представленную у В.П. Глушко, с использованием воздушного разрядника, меняя расстояние между шарами разрядника при высоких напряжениях. Можно также управлять частотой следования импульсов, при любых напряжениях, с помощью современных электронных средств коммутации

<u>Раздел 4. Проект расчета,</u> который, в определенной мере, позволит сделать квалифицированное «Заключение о возможных перспективах изобретения №2554255»

Таблица 1.1 Параметры взрываемого активного рабочего тела МРД (см. рис.1)

	1	2	3
	Показатель	Ед. изм	Величина
1	Кол-во взрываемого электролита по длине	MM	3
2	Объем взрываемого электролита	MM^3	21,195
3	Вес взрываемого электролита	МГМ	21,195
4	Вес взрываемого электролита	грамм	0,021195
5	Вес взрываемого электролита	кΓ	0,000021195
6	Вес взрываемого электролита	Н	0,0002079
7	Масса взрываемого электролита	кг	2,16055E-06

1.2 Объем «пассивного» электролита:

$$V = \pi * r^2 * h = (MM^3)$$

$$V = 3.14 * 1.5 \text{mm} * 1.5 \text{mm} * 60 \text{mm} = 423.9 \text{ mm}^3$$

Таблица 1.2. Параметры "пассивного» электролита (см. рис.1)

	1	2	3
	Показатель	Ед. изм	Величина
1	Длина "пассивного" электролита по длине канала	MM	60
2	Объем "пассивного" электролита	MM^3	423,9
3	Вес "пассивного" электролита	Мгм	423,9
4	Вес "пассивного" электролита	Грамм	0,4239
5	Вес "пассивного" электролита	кΓ	0,0004239
6	Вес "пассивного" электролита	Н	0,004157
7	Масса «пассивного» электролита	кг	4,3211E-05

2. Определим кол-во энергии, запасенной в конденсаторах емкостью 2190 мкф при напряжении 420 вольт

$$W = \frac{U^2 * C}{2}$$

$$W = \frac{420^2 * 0.00219}{2} = 193,16$$
 дж.

3. После разряда на конденсаторах осталось 110 вольт. Определим кол-во неизрасходованной энергии:

$$W = \frac{110^2 * 0.00219}{2} = 13,24$$
 дж.

4. Следовательно, на взрыв израсходовано:

$$W = 193.16 - 13.24 = 180$$
 дж

На этом знания горного инженера- строителя заканчиваются.

И далее Специалистам, с соответствующим образованием и опытом подобных расчётов и имеющих возможность сравнивать полученные

(44)

результаты с аналогичными показателями газовых реактивных двигателей желательно и необходимо:

- 1. Определить теоретический объем образовавшихся паров электролита при приложении энергии в 180 дж к 21 мг жидкости в виде электролита. (вторичным взрывом атомарного кислорода и водорода можно пренебречь).
- 2. Определить теоретическую температуру образовавшихся паров электролита, при приложении энергии в 180 дж к 21 мг жидкости, в виде электролита.
- 3. Определить теоретическое возможное давление в камере взрывания, используя данные п.п. 1 и 2 и исходя из длительности взрыва 0,001- 0,0001 сек.
- 4. Определить теоретическое давление образовавшихся паров электролита на пассивный электролит.
- 5. Определить ускорение пассивного электролита, при истечения его из двигателя, на основании давления, определенного в пунктах 3 и 4.
- 6. Определить теоретическую скорость на выходном срезе канала ЭРД в момент покидания пассивного электролита канала ЭРД.
- 7. Определить импульс единичного взрыва.
- 9. Определить тягу ЭРД при единичном импульсе.
- 9. Определить интегральное значение тяги при нескольких значениях частоты взрывов, например 10 гц, 50гц, 100 гц.

Подобные расчеты выполнены и в сокращенном виде представлены в книге В.П. Глушко, в статье «Металл как взрывчатое вещество». (Стр. 12-29).

Специалисты по реактивной технике, наверное, могут определить: в какой мере расчеты, приведенные в статье В.П. Глушко, можно применить к электролиту, для того, чтобы получить хоть какие-то первичные результаты, позволяющие дать хоть какую-то оценку возможным параметрам ЭРД по изобретению №2554255, и на основании этих расчетов и получить и дать хотя бы и первом приближении, но квалифицированное, основанное на существующих формулах, и пусть в некоторых случаях принятых условно цифрах, или показателях (допустим на основании опыта Специалистов по реактивной технике), что в свою очередь позволит подготовить реальное и компетентное (в первом приближении) Заключение «О возможных перспективах изобретения №2554255».

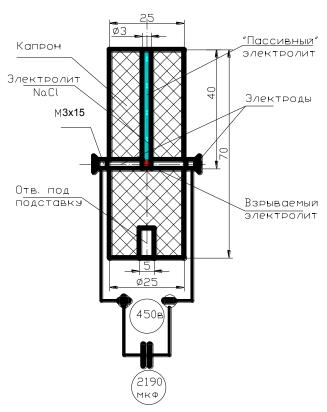
<u>Раздел 5.</u> Желательно далее провести расчет, который может быть проверочным для теоретических показателей, определенных в Разделе 5, и который основан на показателях, определенных на основании эксперимента с баллистическим маятником для изобретения № 2554255.

Прошу учесть, что при определении показателей, с применением баллистического маятника, была использована модель №2554255 по

нижеследующему чертежу с длиной «пассивного электролита» 37 мм, а не 60 мм.

Описание опыта с баллистическим маятником:

Над моделью двигателя по изобретению №2554255, на нитке подвешен пластиковый стакан весом 29 грамм, (упаковка от трех мячиков для большого тенниса). Днище стакана на расстоянии 60 мм от выходного среза Модели двигателя. При электрическом разряде в донной части Модели, пассивный электролит вылетает из модели и ударяет в днище пластикового стакана. Стакан подлетает на высоту 120 мм.


Видео здесь: https://www.youtube.com/watch?v=0QNv2dWE7sA
Таблица 4.1 .

№	1	2	3
	Наименование параметра	Ед. изм	Величина
1	Длина взрываемого электролита	MM	3
2	Объем взрываемого электролита	MM ³	21,195
3	Вес взрываемого электролита	МГМ	21,195
4	Вес взрываемого электролита	грамм	0,021195
5	Вес взрываемого электролита	кΓ	0,000021195
6	Масса взрываемого электролита	Кг(массы)	2,16055E-06
7	Вес взрываемого электролита	Н	0,0002079

Таблица 4.2

No	1	2	3
	Наименование параметра	Ед. изм	Величина
8	Длина пассивного электролита	MM	37
9	Вес пассивного электролита	грамм	0,2614
10	Вес пассивного электролита	кΓ	0,0002614
11	Масса пассивного электролита	Кг(массы)	2,66463E-05
12	Вес пассивного электролита	Н	0,0026
13	Вес пластикового стакана	грамм	29
14	Вес пластикового стакана	кΓ	0,029
15	Масса пластикового стакана	Кг(массы)	0,002956167
16	Вес пластикового стакана	Н	0,2844
17	Напряжение постоянного тока	вольт	420-450
18	Емкость конденсаторов	мкф	2190
19	Высота подлета пластикового стакана	MM	120
20	Остаточное напряжение на конденсаторах	вольт	110

Чертеж микрореактивного двигателя по изовретению №2554255 РФ (Данный МРД с "глэхим" каналом и предназначен для единичных опытных взрываний)

Раздел 6. Цена вопроса на расчеты, эксперимент, отчет и Заключение

Для проведения теоретических и аналитических расчетов, проведения первичных лабораторных экспериментов, которые должны подтвердить или опровергнуть полученные Морозовым В.С. теоретические и экспериментальные результаты для изобретения №2554255 необходимо приобрести:

- 1. Транзистор на 600 вольт и 600 ампер управляемый напряжением. Цена от 10000 руб. до 50000 руб.
- 2. Хороший импульсный генератор напряжения для управления транзистором. Цена от 20000 руб. до 100000 руб. (Напряжение 2-12 вольт, частота 5-200 гц, длительность импульсов 0,01-0,00001 сек)
- 3. Пригласить на один месяц двух хороших Инженеров, Специалистов по расчетам реактивных двигателей И далее:
- 4. 5 рабочих дней на теоретические расчеты.

- 5. 5 рабочих дней на монтаж экспериментального стенда и изготовление модели ЭРД.
- 6. 5 дней на проведение опытных «стрельб» с частотой 10-100 гц.
- 7. 5 дней на подготовку отчета.

Пункты 1-7 актуальны для проведения указанных выше работ в т.ч. и в гараже (!) Морозова В.С.

(«Денег нет, но мы держимся!)

Выполним грубую оценку суммарных затрат на получение настоящего, квалифицированного, подтвержденного экспериментальными данными «Заключения...»

Таблица 1. Оценка затрат на подготовку и получение квалифицированного Заключения о перспективах изобретения №2554255

Nº	Показатель	Тыс. руб
1	Зарплата 2-х Специалистов в течение 1 месяца	200
2	Начисления на зарплату	100
3	Транзистор	25
4	Импульсный генератор напряжения .	60
5	Блок питания постоянным током 500 вольт, 0,5 квт	10
6	Блок (хороших) электролитов конденсаторов на 2500 мкф	10
7	Капрон для модели ЭРД, качалка, динамометр	5
8	Непредвиденные расходы 10%	41
9	Ресурсы лаборатории (тепло, свет, связь, аренда)	20
10	Прибыль предприятия 20%	95
11	Итого:	566

И поскольку, данной проблемой, в таком простом изобретении, никто не занимался и не может дать однозначный Ответ, на вопросы, поставленные Изобретением №2554255, то на основании вышеизложенного необходимо провести и расчеты и эксперименты параллельно в нескольких научно-исследовательских организациях, (на усмотрение Мнобрнауки, но не меньше чем в 2-3х) и только после сравнения Результатов, принять Решение о целесообразности дальнейших исследований перспектив и возможностей Изобретения №2554255.

С уважением, надеждой и заранее с благодарностью

Инженер

Морозов В.С.

Р.S. Прошу не предлагать Морозову В.С. участие в конкурсах на Гранты. Автор трижды участвовал в конкурсах «Старт». Неудачно. Сегодня Морозову В.С. 70. Поэтому поздно где-то и в чем-то «стартовать». Времени маловато, а результаты хочется увидеть.